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The stability of the Rayleigh–Bénard–Poiseuille flow in a channel with large transverse
aspect ratio (ratio of width to vertical channel height) is studied experimentally.
The onset of thermal convection in the form of ‘transverse rolls’ (rolls with axes
perpendicular to the Poiseuille flow direction) is determined in the Reynolds–Rayleigh
number plane for two different working fluids: water and mineral oil with Prandtl
numbers of approximately 6.5 and 450, respectively. By analysing experimental
realizations of the system impulse response it is demonstrated that the observed
onset of transverse rolls corresponds to their transition from convective to absolute
instability. Finally, the system response to localized patches of supercriticality (in
practice local ‘hot spots’) is observed and compared with analytical and numerical
results of Martinand, Carrière & Monkewitz (J. Fluid Mech., vol. 502, 2004, p. 175 and
vol. 551, 2006, p. 275). The experimentally observed two-dimensional saturated global
modes associated with these patches appear to be of the ‘steep’ variety, analogous to
the one-dimensional steep nonlinear modes of Pier, Huerre & Chomaz (Physica D,
vol. 148, 2001, p. 49).
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1. Introduction
The Rayleigh–Bénard–Poiseuille (RBP) system is an open Rayleigh–Bénard (RB)

cell heated from below with a unidirectional through-flow at a sufficiently low
Reynolds number to maintain a laminar parabolic velocity profile. It is noted
that the addition of through-flow to the RB cell is in many respects analogous to
adding axial through-flow to the closely related Taylor–Couette system as discussed
by Chomaz (2005). A schematic of the present RBP system is shown in figure 1
together with the coordinate system used in the following. With and without through-
flow, this system develops a thermo-convective instability as soon as pressure and
buoyancy forces associated with temperature-induced density perturbations are large
enough to overcome viscous forces and to set fluid in motion before heat diffusion
can significantly reduce the driving density perturbation. In the classical laterally
unconstrained RB system without through-flow, this motion takes the form of
convection rolls of arbitrary orientation because of the rotation symmetry of the
base state around any vertical axis. With unidirectional through-flow this symmetry is
broken, and one must distinguish between two principal roll directions: longitudinal
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Figure 1. Schematic of RBP system between two horizontal plates at z = ±d/2 (d = 4 mm)
with Poiseuille flow in the ex direction. Also shown are longitudinal rolls (LR) with axes ‖ ex

and transverse rolls (TR) with axes ‖ ey .

rolls with axes parallel to the flow direction and transverse rolls perpendicular to
the flow direction, henceforth denoted by LRs and TRs, respectively, and included
schematically in figure 1. Since the streamwise direction x is a homogeneous direction
of the RBP system with LRs present the stability boundary for LRs is the same in
the RB and the RBP system. Only the streamlines associated with LRs change from
closed loops to helices. The TRs on the other hand form a chain of counter-rotating
roll pairs pushed along by the mean flow. These structures are two-dimensional (except
near the sidewalls) since the transverse y direction is a homogeneous direction of
the RBP system with TRs. For a thorough review of the characteristics of the RBP
system, see Nicolas (2002).

The stability characteristics of the RBP system are determined by the following
three main parameters and, to a certain degree, also by the path on which specific
parameter values are reached:

(i) The Rayleigh number

Ra =
gβ(Thot − Tcold )d

3

να
, (1.1)

with g the gravitational acceleration, β the volumetric thermal expansion coefficient,
Thot and Tcold the internal surface temperatures of the lower (hot) and upper (cold)
channel walls, respectively, d is the vertical channel height, ν the kinematic viscosity
and α the thermal diffusivity of the fluid evaluated at the mean temperature (Thot +
Tcold )/2.

(ii) The Reynolds number Re is based on the maximum Poiseuille flow velocity
Umax calculated from the volumetric flow rate under the assumption of steady, fully
developed flow,

Re =
Umaxd

ν
. (1.2)

(iii) The Prandtl number Pr, finally, is the ratio of viscous to thermal diffusivities,

Pr =
ν

α
. (1.3)

The above three parameters completely determine the state of an RBP system
with a Newtonian working fluid which is of infinite horizontal extent, has perfectly
conducting channel walls and has a small enough temperature difference (Thot− Tcold )
to justify the approximation due to Boussinesq (1903), where all fluid properties are
evaluated at (Thot+ Tcold )/2 except for the density in the buoyancy term. Such an
idealized system has been the object of several theoretical studies. While the absolute
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Figure 2. (a) Stability diagram of the idealized RBP system of infinite horizontal extent with
perfectly conducting horizontal boundaries. The solid lines are the stability boundaries of LRs
and of TRs and the convective–absolute transition for TRs (bottom to top). (b) Schematic
of the effect of finite transverse aspect ratio according to Luijkx et al. (1981) for two Prandtl
numbers (Pr2 > Pr1). No scales are indicated, since they depend on Pr and AR⊥.

nature of the TR instability at high enough Ra has been accepted since the pioneering
work of Müller (1990), the same question for LRs has only later been clarified by
Carrière & Monkewitz (1999). The resulting stability diagram is shown schematically
in figure 2(a): LRs become unstable at the same RaLR

c = 1708 as the pure RB system,
independent of Re, and they remain, always convectively unstable, as long as Re > 0.
The stability boundary RaTR

c (Re) for TRs, on the other hand, is roughly a quadratic
function of Re for small Re with a curvature that increases strongly with Pr. As Ra is
increased beyond RaTR

c (Re), the TRs become increasingly convectively unstable until
a convective–absolute transition is reached at RaTR

abs (Re) which is again approximately
a quadratic function of Re in the range of small Re considered here.

As soon as a more realistic system is considered, additional control parameters
come into play. The first one is the transverse aspect ratio AR⊥ (channel width/d). As
AR⊥ is reduced, the stability boundary for LRs is pushed to higher Rayleigh numbers
faster than the one for TRs. While these shifts are imperceptible at AR⊥ = 42.5 used
in this study, they become experimentally relevant for AR⊥values of less than, say,
4 when TRs become the dominant mode over a sizeable Reynolds number interval
as shown schematically in figure 2(b). Details on the effects of the Prandtl number
and aspect ratio can be found in Luijkx, Platten & Legros (1981), Kato & Fujimura
(2000) and Nicolas, Luijkx & Platten (2000).

The comparison between theory and experiment is further complicated by the fact
that most theoretical studies of the RBP system use the Boussinesq approximation,
whereas in the present study temperature-induced viscosity variations can reach 50 %
at the highest Reynolds numbers, where a large temperature difference is needed
to reach the high RaTR

c of TRs. Large viscosity variations are known to promote
different convection modes due to the breaking of vertical symmetry, but in the present
study non-Boussinesq effects had at most a quantitative effect on the results. This
is supported by the study of Stengel, Oliver & Booker (1982) who investigated the
effect of viscosity variations on pure RB convection and found that a 50 % variation
induces an increase of Rac of the order of only a few per cent. No comparable study
exists for the RBP system except the one by Sameen & Govindarajan (2007) at high
Reynolds number at which the system is rather a channel flow modified by heating.
For the present case of (very) low Reynolds number we therefore surmise that the
effect is similar to the one found in the RB system. Furthermore, in our experiment
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which required optical access to the test section, the horizontal walls are relatively far
from being perfectly heat conducting because they were made of glass and not the
more standard copper as in most other experiments. In our set-up the ratio between
the thermal diffusivities of fluid and glass αf luid/αwall was 0.12 for oil and 0.21 for
water. According to Hurle, Jakeman & Pike (1967) this reduces Rac in pure RB
convection by 4 % and 7 %, respectively, and also slightly reduces the wavenumber.
The limit of large αf luid/αwall , on the other hand, has been investigated by Busse &
Riahi (1980) and Chapman & Proctor (1980). For the present small αf luid/αwall and
small Re we again assume a behaviour of the RBP system similar to the one reported
by Hurle et al. (1967).

Because of the various difficulties, only few experimental studies of the RBP system
exist, and even fewer experiments have been aimed at elucidating the properties of
TRs. In the latter category is the work of Trainoff (1997) who worked with a long and
narrow spiral-shaped channel of AR⊥ = 2.2 and streamwise aspect ratio AR‖ = 59.
As this AR⊥ is sufficiently low to make TRs the dominant mode over a sizeable range
of Re, Trainoff was able to study the response of TRs to noise and their transition to
absolute instability without being bothered by LRs.

In the present paper we study RBP flow experimentally in a channel of large
transverse aspect ratio. The first aim is to determine the convective–absolute transition
RaTR

abs of TRs and to compare with the linear theoretical results of Müller (1990) and
Carrière & Monkewitz (1999). To avoid any ambiguity, this transition is determined
by two independent methods: as bifurcation to self-sustained TRs and from the
experimental impulse response. Due to the large AR⊥, the principal challenge in these
experiments has been to avoid triggering convectively unstable longitudinal rolls
before the TRs of interest are observed. Pictorially, this amounts to ‘tiptoeing’ very
quietly under the most unstable LRs in order to get at the TRs. The second purpose
of the present study is the experimental characterization of the system response to a
localized supercritical island, a ‘hot spot’, in a subcritical ‘sea’. More specifically, we
are looking at global modes associated with a localized region of absolute instability
in order to assess the asymptotic and numerical studies of Martinand, Carrière &
Monkewitz (2004, 2006) who concluded that such global modes consisted of a packet
of essentially transverse rolls. Experimentally only the final saturated global mode
was accessible without an absolute amplitude calibration, and hence the comparison
with the above-mentioned studies remains qualitative. However, the experiments raise
interesting questions on the connections between the one-dimensional nonlinear global
modes constructed by Pier, Huerre & Chomaz (2001), in particular their ‘steep’ mode,
also called ‘elephant’ mode in Pier & Huerre (2001), and the two-dimensional global
modes observed in our RBP set-up.

2. Experimental set-up
In the first subsection, the RBP channel is described in detail together with the

temperature and flow rate control systems, the technique to produce localized heating
of the bottom plate and the optical set-up. The second subsection is devoted to the
experimental procedures and diagnostics used to obtain the results of § 3. For more
details on the experimental set-up the reader is referred to Grandjean (2008).

2.1. RBP facility

The actual test section consists of two 5.5 ± 0.2 mm transparent floated borosilicate
windows of 170 mm width and 220 mm length (in the flow direction ex), mounted in



Localized instabilities of mixed Rayleigh–Bénard–Poiseuille convection 405

Cold bath

Hot bath

exey

ez

(a)

(a)

(b)

(b)

(c)

(c)
(d)

(e)

( f )

( f )

(g)

(h)(i)

Figure 3. Cross-section of RBP facility (vertical spanwise plane ey – ez normal to the flow
direction): (a), (b) Frames and transparent covers of the heating and cooling baths; (c) brass
frames and windows of the test section; (d ) 4 mm spacer; (e) test section; (g) inlets/outlets
for the temperature-controlled cooling and heating circuits; (f ) added Plexiglas frames within
the heating and cooling baths to provide ‘soft’ thermal boundary conditions on the periphery
of the RBP channel; (h) removable additional thermal resistance between hot bath and test
section used to produce localized ‘hot spots’ at the cut-out (i ).

brass frames separated by a 4 mm Plexiglas (PMMA) spacer. The windows have a
nominal thermal conductivity of 1.2 W (mK)−1 and were fitted into the brass frames
with sufficiently thick silicone joints to allow for differential thermal expansion. The
waviness of the windows, their elastic deflection due to pressure differences and
mounting errors in the brass frames resulted in a total error of the gap height of
�1 %.

The inlet of the channel is located 200 mm upstream of the actual heated test
section in a Plexiglas supply tank of 320 × 320 mm2 cross-section, and the edges of
the inlet are rounded to form a bell mouth. The supply tank has a free surface, and
its length of 600 mm is subdivided by a vertical porous layer 100 mm thick consisting
of 4 mm plastic spheres into a quiet section with the channel inlet and a section in
which the return flow is introduced. Thermal convection in the quiet inlet section is
eliminated by using symmetric heating and cooling of the test section, which keeps the
working fluid in the thermally insulated inlet tank at the mean laboratory temperature.
Immediately downstream of the test section the working fluid is collected through a
spanwise slit at the bottom of the channel followed by a vertical channel of the same
width filled with a 140 mm high layer of small spheres to a level 80 mm below the
test section. This second porous layer ensures that the transverse pressure gradient,
i.e. the spanwise variation of flow velocity, is negligible all the way to the end of the
test section.

The working fluid is circulated by a pulsation-free gear pump (Micropump, model
GB-P35 with integrated bypass) operated at a high internal flow rate of around
105 mm3 s−1 to minimize flow unsteadiness and vibrations in the system. Its output
flow rate is adjusted between 0 and about 500 mm3 s−1 with a continuous electro-
valve, computer controlled by a self-made capillary flowmeter. Two different working
fluids are used in order to test the strong Pr effects: white mineral oil with a nominal
Pr of 450 and distilled water with Pr ≈ 6.5 at laboratory temperature.

As shown in figure 3 the test section is sandwiched between a heating and a cooling
bath each consisting of a PVC frame and an outside glass cover to maintain optical
access to the test section. These baths are incorporated into water circuits thermally
regulated by two Lauda RK8KP thermostats with double-action pumps to achieve
large flow rates with minimum unsteadiness at small pressure drops.
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To minimize the influence of the lateral boundaries on the onset of undesirable
longitudinal rolls, ‘soft’ lateral boundary conditions (i.e. a gradual reduction of Ra to
subcritical conditions in a narrow strip adjacent to the sidewalls of the test section)
were added. For this purpose, frames were inserted into the heating and cooling baths
to make the effective heating and cooling areas narrower than the test section by
20 mm on each side.

For the experiments with non-uniform heating of the bottom plate, two
arrangements were used. To produce an experimental approximation of a hot Dirac
impulse in space and time on the bottom surface of the test section, a dot of black
paint of about 5 mm diameter and 10–15 μm thickness was sprayed on the inside
bottom wall of the test section 50 mm from its upstream edge (the start of the heated
part of the channel). This dot could be heated during a short time (15–30 s proved
optimal for the present experiments) by aiming a continuous argon-ion laser beam
at it from the top with up to 1.5 W output power. Steady non-uniform heating of
the bottom of the test section, on the other hand, has been produced with a spatially
non-uniform thermal resistance placed against the underside of the glass bottom of
the test section. Specifically, a 4 mm thick Plexiglas plate (h in figure 3) is added in
the hot bath and held against the bottom window of the test section by grooves in
the frame (f in figure 3). To obtain the desired shape and location of a hot spot,
appropriate cut-outs were provided in this Plexiglas plate, where the water of the hot
bath could enter into direct contact with the bottom glass window. Motivated by the
theoretical studies of Martinand et al. (2004, 2006), two different shapes were used:
a circular hole of 40 mm diameter and a ‘racetrack oval’ of 15 × 50 mm inclined 45◦

with respect to ex . The centre of both cut-outs was located on the centreline 65 mm
from the leading edge of the test section. In order to produce a hot spot of the same
shape as the cut-outs, it proved necessary to cover the cut-outs by a fine mosquito
screen in order to eliminate local high velocities of the heating water within the
cut-outs.

To observe such a sensitive system, only non-invasive diagnostics can be used.
Furthermore, techniques requiring seeding particles such as laser Doppler anemometry
and particle image velocimetry (PIV) are excluded because at the very low flow
velocities in the present experiments (down to 0.08 mm s−1) even a slight variation of
the fluid density leads to particle deposits on the top or the bottom wall of the test
section and to subsequent pinning of the thermal convection structures. Therefore, a
modified Z-type schlieren system (see Settles 2001) is used. A short arc (0.6 × 2.2 mm)
mercury vapour bulb (Osram 200 W HBO 200 w/4) is placed at the focal point of a
parabolic mirror of 300 mm diameter in order to produce a large parallel beam aimed
through the channel. The perturbed output beam is then focused on a diaphragm to
create the schlieren image which is recorded by a standard 8 bit CCD camera (model
A301 by Basler with up to 80 non-interlaced frames per second of 654 × 494 pixels).
With the mineral oil as working fluid, which has a high temperature sensitivity of
the refractive index, the axisymmetric diaphragm of the camera lens itself was used
to produce the schlieren image. With the smaller refractive index sensitivity of water,
the errors due to imperfections of the schlieren system and of the RBP facility
became comparable. Therefore it was necessary to have a more precise control over
the positioning of the cutoff device. Since a pinhole provided insufficient light for
the camera, a razor blade, which has the disadvantage of being sensitive only to
variations normal to the blade edge, had to be used as cutoff device for the water
experiments.
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While in principle this system integrates refractive index variations over the test
section plus the heating and cooling baths, a sufficiently long exposure time allows
to observe only the variations associated with the thermo-convective instabilities in
the test section, as the small index of refraction variations in the heating and cooling
baths where flow velocities are high occur on a much shorter time scale than those
associated with the instabilities of interest.

2.2. Experimental procedures

In the following, the physical properties of the working fluid are always given
at its mean temperature Tmean which was chosen equal to the average laboratory
temperature.

2.2.1. Determination of the Rayleigh number Ra

Since the flow channel requires full optical access for the observation of roll
pattern, the top and the bottom of the channel are made of borosilicate glass
which has a relatively low thermal conductivity. Therefore, the temperature difference
Thot−Tcold applied to the fluid layer has to be computed from the applied bath
temperature T bath

hot and T bath
cold . Assuming a pure conductive state, Thot−Tcold follows

simply from the continuity of conductive heat flux using the following thermal
conductivities for Borofloat glass, oil and water: κglass = 1.08 W (m ◦C)−1 at 25◦C,
κoil = −7.39×10−5T + 0.1376 and κwater = −8.6×10−6T 2 + 0.0021T + 0.56 with
T specified in degree Celsius. It is noted that this procedure provides the correct
Thot−Tcold up to the onset of thermal convection, independent of the Reynolds number,
except near the upstream edge of the heated/cooled section. Considering that the
oncoming fluid has the mean temperature between the hot and cold baths, the
development length from this upstream test-section edge that is necessary to establish a
linear temperature profile is estimated as (d/2)RePr which has been �7d , i.e. � 28 mm,
in all the experiments reported here, except at the highest velocities of figure 9.

Even though we are mainly interested in the critical conditions for the onset of
thermal convection and the region close to onset where the difference between Racond

based on conduction alone and the true Racond+conv is small, it is useful to estimate the
evolution of this difference. This is possible for Re = 0 with the experimental Nusselt
numbers of Silveston (1958). The resulting relation between Racond and Racond+conv

is shown in figure 4. Note however that the ratio of fluid and wall conductivities of
Silveston were not the same as in the present experiments. For Re > 0 no such data
are available, but the influence of the through-flow on the Nusselt number is small
as long as the vertical velocity associated with the convection rolls is large compared
to their translation velocity. This ratio can be estimated as Re−1Pr−1/2(Ra − Rac)

1/2

which is considerably larger than 10 in all the experiments presented here.

2.2.2. Determination of the Reynolds number and assessment of flow quality

The Reynolds number is based on the ‘maximum’ velocity Umax of the Poiseuille
flow. To deduce it from the flow rate Q measured with the capillary flowmeter and the
dimensions of the channel, the ratio between the maximum and mean velocities needs
to be determined. According to White (1974), the corresponding ratio of Reynolds
numbers for the present transverse aspect ratio of 42.5 is

Re =
Umaxd

ν
=

1.52Umeand

ν
. (2.1)
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Figure 4. Effect of thermal convection on Ra in the pure RB case with water: Racond+conv

obtained from the experimental Nusselt data of Silveston (1958) (vertical axis) versus Racond

computed for the same heat flux with heat conduction alone. The slight discontinuity at
Rac = 1708 is due to experimental errors of the Nusselt number.
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Figure 5. Comparison of theoretical velocity profiles (solid lines) and PIV measurements (�),
normalized with the theoretical maximum velocity Umax . (a) Vertical profile at mid-span y = 0;
(b) spanwise profile at mid-height z = 0.

Result (2.1) presupposes a parabolic profile with a constant maximum velocity
across the channel, except near the sidewalls. This has been verified with PIV at
Ra = 0, i.e. without thermo-convective structures, using seeding particles of average
diameter of 5 μm. A continuous-wave laser sheet was aimed into the channel (without
heating/cooling baths) in such a way as to obtain a light sheet in the working section
that was parallel to ex and inclined 45◦ with respect to ez. (The laser was aimed at
the channel at a computed external angle in order to compensate for the refraction
through the upper window.) The camera was positioned symmetrically to view the
laser sheet at right angles. A mapping function was used to correct for the optical
distortion of the images by the upper window. Data processing was performed with
the open source MatPIV code (Sveen 2004) using multi-pass mode and interrogation
windows of 16 × 16 pixels. One vertical velocity profile u(y = 0, z) at mid-span is
shown in figure 5(a), while the spanwise distribution of maximum velocity u(y, z = 0)
is shown in figure 5(b). These measurements were non-dimensionalized with the
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maximum velocity of the theoretical profile obtained from the flow rate and hence
demonstrate their excellent agreement with the theoretical Poiseuille flow.

2.2.3. Quantification of the schlieren image

To obtain at least semi-quantitative results from a schlieren image, the measured
intensity must be converted to refractive index variations (∝ temperature variations).
However, both a fully experimental calibration of the schlieren system and the
complete theoretical determination of the transfer function proved prohibitively
complex. We simulated a two-dimensional RB cell with finite elements and the
schlieren set-up with geometrical optics to try to relate different image contrasts to
the amplitude of convection rolls. Unfortunately it proved impossible to lower the
error of the diagnostics below 30 % because of too many sources of error such as
pixel saturation, impossibility to simulate the complex camera lens and uncertainty
about the critical alignment of the diaphragm or knife edge. A further uncertainty is
introduced into the simulation by a CCD fill factor of only 75 %, meaning that 25 %
is blind surface around every light-sensitive pixel which is needed for connectivity.

Therefore, the data treatment was limited to producing relative amplitudes of the
rolls within each experimental run. Due to the extreme sensitivity of the schlieren
image to minute changes of the alignment and the light source, amplitudes of different
runs could not be compared. For the study of TRs in the uniformly heated case, the
roll amplitude was determined from a two-dimensional discrete Fourier transform of
480×480 pixels corresponding to an area of 9.6×9.6 mm2. Hence, the highest resolved
wavenumber is (π/d)/(12π), where (π/d) is the approximate roll wavenumber. As the
schlieren signatures of rising and falling fluid are different, the lowest Fourier peak
corresponds to the true roll wavenumber. The roll amplitude is then estimated by
integrating over 5 × 5 spectral points centred on the lowest Fourier peak.

To obtain the spatial amplitude distribution of a saturated global mode associated
with the two hot spots described above, a different image treatment is required. In
a first step, an image of the test section at subcritical conditions is recorded during
start-up of every experimental run and is then subtracted from every image in order
to eliminate as much as possible the mosquito screen covering the cut-out as well
as stationary optical defects. Any remaining high-wavenumber noise is then removed
by a two-dimensional finite impulse response (FIR) band-pass filter centred on the
fundamental roll wavenumber. Finally, the envelope of global modes is determined as
the absolute value of the complex image consisting of the filtered experimental image
as real part and its Hilbert transform as imaginary part (Oppenheim & Schafer 1989).
As the global modes associated with absolutely unstable hot spots consist essentially
of TRs, the FIR Hilbert transform was only applied in the flow direction ex .

2.2.4. Characterization of varying surface temperatures

The temperature distribution of the lower surface of the test section produced by the
cut-outs of the extra thermal resistance (i in figure 3) was investigated with thermo-
chromic liquid crystal (TLC) sheets. Using a proper hue/temperature calibration
provided a resolution of ±0.5◦C and allowed in particular to determine the actual
shape of the absolute instability boundary RaTR

abs (x, y, Re) of transverse rolls as a
function of Re for both cut-out shapes. As an example, temperature profiles for the
racetrack oval at Re = 0 and Ra = 1690 are shown in figure 6.
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Figure 6. Measured temperature profiles produced by the 15 mm × 50 mm racetrack oval
cut-out using TLC at Ra = 1690 and Re = 0. (a) Temperature map computed pixel-by-pixel
from TLC calibration curve; (b), (c) temperature profiles in the different sections defined
in (a).

3. Results and conclusions
In the first two subsections the experimental stability characteristics of the RBP

system at low Re with uniform heating and cooling of the bottom and top walls are
presented. The aim is to determine the convective–absolute transition for TRs. This
programme is hampered by the fact that LRs in a large RBP cell become convectively
unstable at a lower Ra than the TRs, independent of Re. It is nevertheless possible to
avoid any measurable perturbation of the base state within the finite length of the test
section up to the point at which TRs become self-excited because LRs never become
absolutely unstable for Re > 0 (Carrière & Monkewitz 1999). Therefore LRs can be
avoided by sufficiently reducing or eliminating all sources of their excitation. This
has been a major difficulty of this study, as our system had to be made excessively
quiet (see also Ouazzani et al. 1995). This requirement can only be relaxed if the
transverse aspect ratio is drastically reduced to the point of making TRs more
unstable than LRs at low Re, as in the experiments of Trainoff (1997) with AR⊥ =
2.2.

After successfully avoiding LRs, there still remains the question of whether TRs
appear in the experiment only at and beyond the convective–absolute transition,
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as assumed in § 3.1, or also in convectively unstable situations. The latter is highly
unlikely, since the excitation of convectively unstable TRs requires highly spanwise
coherent, i.e. two-dimensional, perturbations which are not expected to be contained
in the uncontrolled ‘experimental noise’ of the present set-up. This interpretation
of the results of § 3.1 are verified with impulse response experiments in § 3.2. In
the third subsection, thermo-convective patterns are investigated which are due to
localized heating of the bottom plate, i.e. due to a local patch of super-criticality
(including an area of absolute instability) in an otherwise stable channel. The resulting
global modes are in most cases clearly two-dimensional analogues of the one-
dimensional steep nonlinear modes of Pier et al. (2001). This is further confirmed
by comparison of experimental saturation amplitudes with available numerical
results.

3.1. Appearance of transverse rolls at the convective–absolute boundary

As said above, it is assumed that in the experiment TRs first appear spontaneously
after crossing the boundary between convective and absolute instability. To determine
the critical Rayleigh number RaT R

abs for the convective–absolute transition of TRs as
a function of Re, runs at about ten different fixed Reynolds number were carried out
with each fluid. Each run started from a completely settled system at the laboratory
temperature and proceeded through step increases of the temperature difference
between the cooling and the heating bath, typically to Ra ≈ 3000–6000 (corresponding
to a maximum temperature difference of approximately 25◦C for oil and 10◦C for
water). After each slow temperature increase of around 1◦C the system was left to
settle for 40 min, during which time temperature and the thermo-convective pattern
could reach equilibrium. This equilibration time corresponds to 12 and 20 thermal
diffusion times (d2/α) for mineral oil and water, respectively. Only then images of
the roll pattern were taken and the next temperature increase was started. To further
minimize the undesirable appearance of LRs, the temperature steps were chosen
such as to avoid the settling period in a region of the stabililty diagram (figure 2)
where LRs are unstable and TRs still stable whenever this was possible, i.e. when
the width of this region corresponded to a temperature difference of no more than
1◦C. Each experimental run lasted about 12 h and was performed during the night
to minimize environmental perturbations, vibrations from nearby vehicle traffic in
particular.

To extract the Ra of the convective–absolute transition (at constant Re) for TR
we use Landau’s theory (see Drazin & Reid 2004) for a standard supercritical
Hopf bifurcation. It holds that beyond the bifurcation, the saturation amplitude of
the fundamental squared is proportional to the super-criticality parameter, in this
case proportional to the difference between the Rayleigh number and RaTR

abs of the
convective–absolute transition:

|A0|2sat ∝
(
Ra − RaTR

abs

)
. (3.1)

As usual, for every fixed Re the bifurcation is located by recording TRs at several
supercritical Rayleigh numbers (typically around 10), determining their fundamental
amplitude by Fourier analysis (see § 2.2) and least squares fitting these amplitudes
with (3.1). The justification for this approach comes from both experiment and theory.
On the one hand, the data correlate well with (3.1) (see Grandjean 2008), and the
theoretical analysis of Kato & Fujimura (2000) has shown that the bifurcation to
TRs is supercritical for Pr = 7 and AR⊥ down to unity.
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Figure 7. Stability boundaries in the Ra–Re plane for (a) oil and (b) water. The continuous
lines are the least square quadratic fits (3.2) of the present experimental onset of TRs (�).
The dash-dotted curve is the convective–absolute transition of TRs evaluated numerically by
Carrière & Monkewitz (1999), while the dashed line is from the DNS of Müller, Lücke &
Kamps (1992). The dotted lines marked by ‘�’ and ‘�’ are measurements by Trainoff (1997) of
RaTR

c and RaTR
abs , respectively, for water. The horizontal continuous line provides the reference

Ra = 1708.

The results for oil and water are shown in Figures 7(a) and 7(b), respectively.
The circles with error bars are the present experimental measurements corresponding
to the convective–absolute transition in figure 2. The solid lines are least squares
quadratic fits of the experimental RaTR

abs given by

RaTR
abs (oil) = 9.296 × 105 Re2 − 9.897 × 103 Re + 1.723 × 103, (3.2)

RaTR
abs (water) = 1.199 × 102 Re2 − 1.010 × 101 Re + 1.640 × 103. (3.3)

Also included in figure 7 is the two-dimensional direct numerical simulation (DNS)
of Müller, Lücke & Kamps (1992) (dashed line) and the convective–absolute
transition computed by Carrière & Monkewitz (1999) (dash-dotted line). Finally,
the experimental convective ‘�’ and absolute ‘�’ instability boundaries of Trainoff
(1997) are included in the right-hand graph to show the strong stabilizing effect of
his very small transverse aspect ratio (AR⊥ = 2.2), but it is noted that according to
Kato & Fujimura (2000), his RaTR

abs (Re = 0) should be around 2380. For the present
data, one notices that the experimental convective–absolute transition curve lies below
the theoretical and numerical curves. This difference is attributed to the finite heat
diffusivity of the glass windows as opposed to the infinite diffusivity assumed in
the theoretical and numerical studies. For our set-up, the ratios of heat diffusivities
αf luid/αwall are 0.12 and 0.21 for oil and water, respectively. According to Hurle et al.
(1967) these ratios reduce the ‘standard’ value of Rac (Re = 0) = 1708 by about 70
and 120 for oil and water, respectively, which is fully consistent with the error bars
in figure 7.

It is interesting to note that while the effect of the finite heat diffusivity of the walls
on RaTR

abs is relatively weak, the phase speed of the TRs is strongly affected. While
the Reynolds numbers in oil were too low to obtain reliable measurements, the phase
speed of TRs in water could be measured at a sufficiently supercritical Ra = 4000
with an estimated error of ±6 % in the Reynolds number range 0.4 � Re � 1.6. In
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this range, the result is well approximated by the ad hoc correlation

cphase(TR@Ra = 4000)/Umean ≈ 0.6235 exp(−4.076Re) + 0.9466. (3.4)

The extrapolated phase speed at Re = 0 compares reasonably well with the values of
around 1.4 reported by Ouazzani, Caltagirone, Meyer & Mojtabi (1989) and Nicolas
et al. (2000). The physical reason for this strong effect of Re is the small thermal
diffusion velocity in the wall (αwall/2d) based on approximately one roll wavelength
(≈2d) which, for water at Ra = 4000, is smaller than the flow velocity beyond
Re ≈ 0.013 and therefore acts as a ‘brake’ on the propagation of TRs.

3.2. Convective–absolute transition from the impulse response

In the previous subsection it has been argued that in our experiment TRs first
appear at the convective–absolute instability boundary and not at the traditional
(convective) instability boundary. To support this, the impulse response of the present
system has been studied experimentally. It permits the unambiguous determination
of the convective or absolute nature of the instability by measuring the propagation
direction of the upstream edge of the wave packet as shown for the RBP system by
Carrière & Monkewitz (1999).

To measure the impulse response of the system, the system was stabilized in the
desired supercritical state. Then a temporary fast flow rate during typically 5–10 s was
used to sweep the thermo-convective rolls out of the test section. Then, the flow rate
was rapidly reduced to the desired Re, and the system was left to settle for 1–2 min
(depending on Pr) in order to obtain a stationary and convection-free supercritical
system. At this time, the black target of 5 mm diameter on the bottom surface of the
channel was heated by a laser pulse of 0.8–1.5 W output power during 15–30 s. Two
examples of the response to this experimental approximation of a Dirac heat input,
as recorded by the schlieren system, are shown in figures 8(a) and 8(c), where (a)
clearly represents an absolutely unstable situation, as the impulse response has spread
upstream of the black target, and (c) a convectively unstable case.

In principle, the ‘edge’ of the impulse response is defined as the contour separating
amplified from damped perturbations. In practice, the edge visible on a schlieren
image is not well defined. Since the stationary black dot did not allow the use of the
Hilbert transform to determine the envelope of the wave packet, we have chosen to
determine the position of upstream and downstream edges ‘by hand’: it is defined as
the outermost coherent contrast emerging from the noise of the schlieren image. As the
wave packet continuously adds new approximately circular rolls at its circumference,
this technique has a tendency to produce jumps in the edge positions. However, the
envelope of the visual edge positions appears to be a good approximation of the true
wave-packet edge. To obtain the edge velocities, the edge positions are fitted linearly.
In cases in which the system is contaminated by TRs and/or LRs originating from
perturbations other than the laser impulse, the fits are limited to early times as in
figure 8(b).

The measurements of wave-packet edge velocities as a function of the Reynolds
number Re for a fixed Ra � 2000 are summarized in figures 9(a) and 9(b) for
oil and water, respectively. The transition from absolute to convective instability is
clearly identified as the Re at which the upstream edge velocity (stars on the graphs)
becomes positive, i.e. at which the entire impulse response starts moving downstream.
Considering all the uncertainties, this ReTR

abs from the impulse response compares well
with the convective–absolute transition in figure 7 obtained from the Hopf bifurcation
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Figure 8. (a) and (b) Impulse response in oil (Pr = 450) at Re = 0.0064 and Ra = 1970. (a)
Raw schlieren image with vertical broken lines marking the upstream (left) and downstream
(right) edges of the wave packet. (b) Trajectories of upstream edge (∗), downstream edge (�)
and centre (�) of wave packet; −−−−, trajectory at mean Poiseuille flow velocity; − · − · −, least
squares fits of edge trajectories; ↓, time of schlieren image (a). (c) and (d ) Analogous to (a)
and (b) but for oil at Re = 0.064 and Ra = 2060.

of TRs in the uniformly heated system and indicated by the vertical arrows in
figure 9.

3.3. The response to steady localized heating

In the final part of this study, the response of the RBP system to a single ‘island’
of localized supercritical heating in the middle of a subcritical ‘sea’ is explored. The
hot islands are created by a hole in an additional thermal resistance on the heating
bath side of the lower channel wall, as described in § 2.1. The main goal of these
experiments is to observe the ‘saturated’ thermo-convective global modes produced
by two different supercritical islands previously studied analytically and numerically.

The experimental procedure is the same as the one used for the detection of the
transverse roll onset. A step-by-step Ra increase is imposed on the system while Re
is kept constant, and the system is left to settle the entire night after the final value
of Ramax (maximum Rayleigh number inside the hot island) is reached. Only then
a schlieren image of the final stationary saturated global mode is recorded. Thereby
Ramax is chosen to be the largest value which allows Ra∞ (Rayleigh number far from
the localized heating area) to stay in the subcritical range with the given thermal
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Figure 9. Edge velocities of the impulse response versus Re for Ra � 2000: ∗ , upstream
edge; �, downstream edge; ↓, convective–absolute transition for Ra � 2000 from figure 7.

resistance. Since Rac for TRs, which dominate in global modes at Re > 0, is an
increasing function of Re, a large value for Ramax is necessary to compare global
modes at a fixed Ra and different Re.

The amplitude distribution of the saturated localized convection pattern is then
determined by the Hilbert transform technique, as described in § 2.2, but it has not
been possible to obtain consistent amplitudes between different experimental runs.
This is because the schlieren system has to be realigned after every experimental run,
and even minute changes of the cutoff-device position produces large differences of
contrast. Hence, the amplitudes are without scale in the following figure 10, which
shows the system response to localized heating in the form of an oblique racetrack oval
and of a circle for oil as working fluid. No results for water are shown because of the
weak schlieren contrast. To facilitate interpretation, both the roll pattern and a three
dimensional plot of the envelope are given in each case. The dark grey colouring of the
envelopes indicates where the underlying base state is locally absolutely unstable as
determined from the surface temperature measured with liquid crystals in a separate
experiment (see § 2.2) and the measured transition curve fitted by (3.2). The light grey
colouring, on the other hand, lumps local convective instability or stability which
are not distinguished, as this would require a full stability analysis with the actual
boundary conditions.

Looking first at the two images in figures 10(a) and 10(d ) for Re = 0, the global
mode is seen to have the same shape as the hot spot and to be centred on it, i.e. on its
locally absolutely unstable region, as expected from the symmetries of the no-flow base
state, i.e. rotation symmetry for the circular hot spot and two reflection symmetries
for the racetrack oval (neglecting the distant boundaries of the test section). Note
that the rolls in figure 10(a) are aligned with the short side of the racetrack oval,
analogous to the roll pattern in a box of low aspect ratio.

As soon as the flow is turned on, these symmetries are broken as seen in figures
10(b), 10(c), 10(e) and 10(f ), and the rolls forming the global modes are aligned
approximately normal to the flow or in other words are TRs independent of the shape
of the hot spot. This is entirely consistent with the notion that a localized global mode
is generally associated with an area of local absolute instability and that only TRs
become absolutely unstable in the RBP system. Note that figure 10(c) corresponds
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(a) Re = 0.000, Ramax = 2682 (b) Re = 0.015, Ramax = 2635 (c) Re = 0.021, Ramax = 2656

(d) Re = 0.000, Ramax = 2615 (e) Re = 0.009, Ramax = 2542 ( f ) Re = 0.018, Ramax = 2666

Figure 10. Envelope of global modes for Pr = 450, Ra � 2600 and different Re with
absolutely unstable area in dark grey. The original schlieren images with the outline of the
cut-out in the thermal resistance are shown below each amplitude distribution. (a)–(c) Hot
spot in the form of an oblique racetrack oval; (d )–(f ) circular hot spot. The Poiseuille flow
direction is from left to right in all images. Note that the vertical scale does not change within
the sequences (a)–(c) and (d)–(f ) but is different in both sequences.
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Figure 11. Normalized vertical component w of the perturbation velocity of the nonlinear
saturated modes computed by Martinand et al. (2006) for a swept elliptical temperature
spot. (a) Pr = 7, Re = 0.38 and Ramax = 1800 while Ra∞ = 1500; (b) Pr = 7, Re = 0.85 and
Ramax = 2000 while Ra∞= 1500. Dark, medium and light grey correspond, respectively, to
absolute instability, convective instability and stability of TRs.

to an Re close to the stability boundary of the global mode, while the highest Re for
the circular hot spot in figure 10(f ) is well within the unstable region.

Figure 10 is clearly in qualitative agreement with the theoretical analysis and
the numerical simulations of global modes by Martinand et al. (2004, 2006). For
an easier comparison, two of these computations for a swept elliptical hot spot
similar to the experimental racetrack oval are reproduced as figure 11. Despite that
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Figure 12. Streamwise amplitude profile corresponding to a streamwise slice of figure
10(b): ——, schlieren signal band-pass filtered at the fundamental roll wavenumber; – – –,
wave-packet envelope with stars indicating local absolute instability.

the computations were made for water as a working fluid, the similarities with
figures 10(b) and 10(c) are striking. Of particular interest is the question whether
the saturated global modes in the RBP system are the two-dimensional equivalent
of ‘steep’ or ‘soft’ one-dimensional nonlinear global modes first analysed by Pier
et al. (2001). Even though the global modes of figure 10 appear to be ‘attached’ to
the most upstream portion of the absolute instability boundary, analogous to the
steep one-dimensional modes, it is difficult to fully answer the question based on the
three-dimensional plots. Therefore, the case of figure 10(b) for Pr = 450, Re = 0.015
and Ramax= 2635 is analysed in more detail. First, to increase the signal-to-noise
ratio, the original image has been band-pass filtered in the streamwise direction at
the roll wavenumber (note that this produces an average of the schlieren signatures
of rising and falling fluid which are different). Then a streamwise slice approximately
through the centre of the wave packet was selected, and the envelope of this slice
containing about 10 rolls was computed by Hilbert transform. The result, after a
final spline smoothing, is displayed in figure 12 without amplitude scale, since no
calibration of the schlieren system was possible. This streamwise slice through the
saturated global mode of figure 10(b) clearly shows a difference between the steeper
front and the flatter back. Hence, for Re > 0 our two-dimensional global modes have
all the essential characteristics of the one-dimensional steep global modes constructed
by Pier et al. (2001):

(a) The steep front of the saturated global mode is seen to be ‘attached’ to the
most upstream part of the convective–absolute boundary.

(b) The global mode consists of structures which become locally absolutely unstable
at its front; i.e. it consists of TRs.

(c) The flatter back of the global mode extends well into the downstream convective
and stable regions.
Note that the length of the wave packet does not figure in the above list, as it depends
on the extent of the absolutely unstable and the downstream convectively unstable
regions. Hence, all the evidence points in the direction of the saturated global modes
of figure 10 being two-dimensional equivalents of ‘steep’ one-dimensional global
modes. A definitive conclusion will however have to await the extension of nonlinear
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global mode theory to two dimensions which will in particular have to establish
the conditions for the existence of the upstream nonlinear front in the presence of
transverse inhomogeneity.

The authors would like to thank Dr Navid Borhani for his valuable help in setting
up this experiment and gratefully acknowledge the financial support of the Swiss
National Science Foundation under grant no. 200020-208177.
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875–886.

Pier, B. & Huerre, P. 2001 Nonlinear synchronization in open flows. J. Fluids Struct. 15 (3–4),
471–480.



Localized instabilities of mixed Rayleigh–Bénard–Poiseuille convection 419

Pier, B., Huerre, P. & Chomaz, J.-M. 2001 Bifurcation to fully nonlinear synchronized structures
in slowly varying media. Physica D 148, 49–96.

Sameen, A. & Govindarajan, R. 2007 The effect of wall heating on instability of channel flow. J.
Fluid Mech. 577, 417–442.

Settles, G. S. 2001 Schlieren and Shadowgraph Techniques . Springer.
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